Building an Effective Cybersecurity Program Syllabus (Sample)

👍 Instructor:	Tari Schreider
🔇 Phone:	678.595.2818
🖄 Email:	trschreider@gmail.com
Description:	A study of cybersecurity principles, practices, frameworks, standards, and best practices necessary to design, build and manage a cybersecurity program. Discussion covers cybersecurity program architecture, defining a governance foundation, building a threat and vulnerability capability, building a risk management capability, implementing defense in depth strategies and applying service management concepts.
→ Prerequisites:	Prerequisites can be assigned once the course level has been determined.
Required Text:	Building an Effective Cybersecurity Program – Author: Tari Schreider – Publisher: Rothstein Publishing – ISBN: Print – 9781944480530, PDF – 9781944480554 – EPUB – 9781944480547
Duration:	Can be Taught as an 8- or 16-Week Course
Class Length:	One or two 90-minute Classes Held Weekly
Q Credits:	3 Credits
Overview:	In this course, you will study how to build a cybersecurity program from a Chief Information Security Officer's (CISO) perspective.
	The course is designed as a roadmap to guide students through the phases of creating a comprehensive cybersecurity program to protect information and assets.

Essential program design methodologies and authoritative
industry security and privacy standards are covered to
explain how to define and implement governance, risk and
compliance components.

An overview of the most critical information and asset protection technologies and controls are presented along with how to define the necessary policies, procedures and processes to effectively manage and operate a cybersecurity program.

Students will learn key cybersecurity program management disciplines consisting of program staffing, budget management, third-party risk management, cyber risk insurance, and security awareness training. Creating threat, vulnerability, intelligence, and risk management functions are covered in depth along with how to apply service management concepts to automate and improve security and privacy services.

The course also covers the latest developments in integrating application development, operations and security (DevSecOps), security operations (SecOps), security automation and orchestration (SAO), and emerging technologies.

Outcomes: After completing this course, students should be able to:

- Create a cybersecurity program blueprint to guide the creation of a pragmatic program to protect information and assets.
- Understand the differences and advantages of information asset protection technologies and services and how they're used to create a layered protection strategy.
- Identify and categorize and threats and vulnerabilities using cybersecurity intelligence.
- Manage and mitigate risk through the application of risk treatment options consisting of key controls, cyber risk insurance, compensating controls and risk avoidance.
- Develop an information and asset security governance and management program that aligns with organizational strategies by evaluating business requirements, applicable laws, regulations, standards, and best practices.

BY TARI SCHREIDER, LICENSED UNDER A CREATIVE COMMONS ATTRIBUTION-NONCOMMERCIAL-NODERIVATIVES 4.0 INTERNATIONAL LICENSE.

- Identify supply chain threats introduced by third-party security breaches and disruptions.
- Identify and evaluate cybersecurity program maturity levels and how to improve program efficiency through the adoption of service management.

During the course, students can be responsible for the following example projects:

Papers:

Projects:

- Cyber Threats Research and create a PowerPoint presentation on critical cybersecurity threats facing organizations today.
- Defense-in-Depth Model Build a defense-in-depth model identifying technologies aligned to the open systems interconnection (OSI) model and defend their selection of products and services.
- Control Standard Comparison Compare two cybersecurity control standards outlining their respective advantages and disadvantages providing a recommendation of adoption.
- Team Paper Team presentations of assigned course project using the cybersecurity program design toolkit.
- Case Studies:
 - Ransomware Attack Identify and research a major organization that has experienced a ransomware attack and detail their impacts and response.
 - Security Awareness Create a company profile based on a public information and create a security awareness program aligned to their workforce.
 - Security Testing Select a public company, identify their web service presence and recommend effective security testing strategies.
- Labs:
 - Risk Assessment Identify a common web application to perform a risk assessment using the provided excel-based risk assessment tool. Recommend a risk treatment plan to mitigate the identified risk.
 - Security Metrics Create supporting metrics for each cybersecurity technology or service identified in the previously created defense-in-depth model.

BY TARI SCHREIDER, LICENSED UNDER A CREATIVE COMMONS ATTRIBUTION-NONCOMMERCIAL-NODERIVATIVES 4.0 INTERNATIONAL LICENSE.

 Security Budget – Create a cybersecurity program organization budget based on the previously created defense-in-depth model. Include acquisition, deployment and maintenance costs.

Schedule:

The following provides an overview of the 16-week course with associated assignments:

Week	Assignments
1	Topic: Standardized Cybersecurity Program Design
	Readings: As assigned in classroom
	Key Concepts:
	$_{\odot}$ Course introduction and overview
	$_{\odot}$ Today's cybersecurity threats
	 Cybersecurity program drivers
	 Role of the cybersecurity architect
	o Roadmap
	 Emerging cybersecurity technologies
	Assignments:
	 Participate in classroom discussions
	\circ Paper – Cyber threats
	\circ Case study – Cybersecurity architect job market
	 Lab – Industry drivers
2	Topic: Designing a Cybersecurity Program
	Readings: As assigned in classroom
	Key Concepts:
	 Program design methodology
	○ Development approach – ADDIOI Model™
	 Architectures, frameworks and models
	 Program design guide
	 Design principles
	 Architectural views
	 Program blueprint
	 ○ Program structure
	Assignments:
	 Participate in classroom discussions
	 Paper – Architecture comparison
	 Case study – Most commonly used frameworks
2	○ Lab – Risk assessment Tarrier Orbertsessment
3	Topic: Cybersecurity Frameworks & Models
	Readings: Assigned in classroom Key Concepts:
	 Introduction to frameworks and models
	 ○ Introduction to maneworks and models ○ HITRUST[®] CSF[®]
	 Information Security Forum (ISF) Framework
	 ISO/IEC 27001/27002
	 NIST Cybersecurity Framework (CSF)
	U MIST Cyberseculity Framework (CSF)

Week	Assignments
	Assignments:
	 Participate in classroom discussions
	 Paper – ISO vs NIST control libraries
	 Case Study – Ransomware attack
	 Lab – Achieving HIPAA compliance with HITRUST
4	Topic: Cybersecurity Program Technologies – Part A
	Readings: As assigned in classroom
	Key Concepts:
	• Application security
	 Authentication
	 Cloud security
	 Container security
	 Data loss prevention
	 Digital forensics
	 Distributed Denial of service mitigation
	 Description technology
	Assignments:
	 Participate in classroom discussions
	 Paper – Cloud security domain analysis
	 Case study – None
	 Lab – None
5	Topic: Cybersecurity Program Technologies – Part B
5	Readings: Assigned in classroom
	Key Concepts:
	 Domain name service attack security
	 Encryption Endpoint protection
	 Firewalls (FW)
	 Identity access management (IDAM)
	 Internet of Things (IoT) Security
	 Intrusion protection systems (IPS)
	 Network access control (NAC) Open source software protection
	 Open source software protection Drivilaged account management (DAM)
	 Privileged account management (PAM)
	Assignments:
	 Participate in classroom discussions Panar LaT domain analysis
	 Paper – IoT domain analysis Case study – None
	 Case study – None Lab – None
	○ Lab – None
6	Topic: Cybersecurity Program Technologies – Part C
	Readings: As assigned in classroom
	Key Concepts:
	 Security information and event management (SIEM) Security Orchestration, Automation and Response
	 Security Orchestration, Automation and Response
	(SOAR)
	 Threat intelligence platform (TIP)

Week	Assignments
	 User and entity behavior analysis (UEBA)
	 Virtualization security
	 Vulnerability management
	 Web filtering
	 Whitelisting
	Assignments:
	 Participate in classroom discussions
	 Paper – Virtualization security analysis
	 Case study – None
	o Lab − None
7	Topic: Cybersecurity Training & Program Maturity
	Readings: As assigned in classroom
	Key Concepts:
	 Security training program
	 Awareness training
	• Cybersecurity personnel roles and responsibilities
	 Security talent development
	o Training
	 Certifications
	 Culture of security
	 Phishing attack training
	 Ransomware simulations
	 Maturing cybersecurity programs
	 Maturity models and ratings
	Assignments:
	 Participate in classroom discussions
	 Paper – Security awareness presentation
	 Case study – Research and report on effective security
	awareness techniques
	o Lab − None
8	Topic: Cybersecurity Program Governance & Policies
	Readings: As assigned in classroom
	Key Concepts:
	 Governance overview
	 Governance playbook
	 Governance frameworks
	 Governance oversight board
	 Policy model
	 Policy management
	 Policy management products
	◦ GRC software
	Assignments:
	 Participate in classroom discussions
	 Paper – Governance playbook
	 Paper – Governance playbook Case study – Research and report on most published

Week	Assignments
	○ Lab – None
9	Topic: Threat Management & Intelligence Gathering
	Readings: As assigned in classroom
	Key Concepts:
	 Cyber threats
	 Cyber threat categories
	 Threat taxonomies
	 Threat frameworks
	\circ Threat actors
	\circ Threat hunting
	\circ Threat modeling
	 Threat detection solutions
	\circ Threat metrics
	\circ Threat maps
	 Advisory profiles
	Assignments:
	 Participate in classroom discussions
	\circ Paper – Threat actor profile
	\circ Case study – Physical threat taxonomy
	○ Lab – None
10	Topic: Attack Surface & Vulnerability Management
	Readings: As assigned in classroom
	Key Concepts:
	$_{\odot}$ Attack surface classification and management
	\circ Attack surface mapping
	\circ Shadow IT
	$_{\odot}$ Vulnerability management overview
	 Vulnerability scanning
	 Patch management
	Assignments:
	 Participate in classroom discussions
	 Paper – Attack surface
	\circ Case study – Security testing approaches
	◦ Lab – None
11	Topic: Risk Management
	Readings: As assigned in classroom
	Key Concepts:
	 Cyber risk landscape
	\circ Risk appetite and tolerance
	\circ Risk threshold and acceptance
	\circ Inherent vs. residual risk
	\circ Annualized loss expectancy (ALE)
	\circ Cyber risk assessments
	 Business Impact assessments (BIA)
	○ Risk registry
	 Cyber risk frameworks, standards and models

Week	Assignments
	 Cyber risk treatment plans
	 Risk monitoring and management
	Assignments:
	 Participate in classroom discussions
	 Paper – Quantitative vs qualitative risk advantages and
	disadvantages
	 Case study – Most commonly used risk models
	 Lab – Risk assessment
12	
12	Topic: Incident Response & Operations Integration
	Readings: As assigned in classroom
	Key Concepts:
	 Incident response overview
	 Incident response model
	 Incident response management products
	$_{\odot}$ Security automation and orchestration (SAO)
	 DevSecOps overview
	 DevSecOps factory model
	 Software-defined security (SDSec)
	Assignments:
	 Participate in classroom discussions
	$_{\odot}$ Paper – Quantitative vs qualitative risk advantages and
	disadvantages
	 Case study – Security stories
	$_{\odot}$ Lab – Risk assessment
13	Topic: Defense-in-Depth Strategy
	Readings: As assigned in classroom
	Key Concepts:
	 Defense-in-depth overview
	 OSI security model and countermeasures
	 Depth-in-depth layers
	○ GRC domain
	 Threat and vulnerability management domain
	• Application, database and software security domain
	 Security operations (SecOps) domain
	 Device and data protection domain
	 Cloud service and infrastructure protection domain
	○ Zero-trust model
	Assignments:
	 Participate in classroom discussions
	 Paper – Success or failure of deploying a zero-trust
	model
	 Case study – OSI Model threat alignment
	 Lab – Risk assessment
14	Topic: Security Program Testing
14	
	Readings: As assigned in classroom Key Concepts:

Week	Assignments
	 Security testing overview
	 Penetration testing
	 Red teaming
	 Bug bounties
	 War gaming
	\circ Tabletop testing
	Assignments:
	 Participate in classroom discussions
	$_{\odot}$ Paper – Success of commercial bug bounty programs
	\circ Case study – Inhouse vs. contracted penetration
	advantages and disadvantages
	 Lab – Ransomware simulation
15	Topic: Service Management
	Readings: As assigned in classroom
	Key Concepts:
	\circ Information Technology Service Management (ITSM)
	\circ Cybersecurity service management
	\circ Cybersecurity service management framework
	\circ Service management catalog
	Assignments:
	 Participate in classroom discussions
	 Paper – None
	 Case study – None
	 Lab – Service management catalog
16	Topic: Program Management Disciplines & Team Project
	Presentation
	Readings: As assigned in classroom
	Key Concepts:
	 Budget management
	 Procurement
	 Project management
	 Cybersecurity insurance
	$_{ m o}$ Third-party risk management
	Assignments:
	 Participate in classroom discussions
	 Paper – Team project paper
	 Case study – None
	◦ Lab – None

Instructor Notes The following are important notes for institutions considering incorporating Building an Effective Cybersecurity Program as part of their cybersecurity curriculum:

> The sample syllabus can be used in both an 8-week and 16week configuration.

BY TARI SCHREIDER, LICENSED UNDER A CREATIVE COMMONS ATTRIBUTION-NONCOMMERCIAL-NODERIVATIVES 4.0 INTERNATIONAL LICENSE.

- The course can be delivered as a 100-level to Master-level format. The emphasis of depth would be applied by the instructor. Labs, case studies and papers can be made more complex to match the course level.
- Papers, case studies and labs are suggestions, many other materials exist within the text to create other projects.
- The total estimated classroom time is 48 hours.
- The total projected study and project time is 48 hours.
- Completion of the course would prepare students to sit for one of the following information security certifications:
 - CompTIA[®] Security+
 - Global Information Assurance Certification (GIAC)
 - o ISACA CSX Cybersecurity Fundamentals Certificate

Note: Noted certifications do not require job experience.

Institutions committing to this coursebook would receive the following support:

- Author will guest lecture via Skype on a topic related to the course material for one-hour.
- Author will provide two hours of instructor phone and/or email support during the first semester the course is taught.
- Course delivery materials provided consist of instructor sample syllabus, delivery courseware, activity assignments, and a test bank of 50 questions.

Support